首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   11篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   15篇
  2011年   10篇
  2010年   4篇
  2009年   4篇
  2008年   11篇
  2007年   2篇
  2006年   11篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1952年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有155条查询结果,搜索用时 31 毫秒
51.
There is increasing evidence that modulation of tumor hypoxia may improve therapy outcome. However, most preclinical data are derived from subcutaneous rather than orthotopic tumor models. We investigated the effect of the hypoxia-modulating agents nicotinamide and carbogen on tumor hypoxia, tumor blood perfusion, and proliferative activity in liver metastases of the murine colon carcinoma line C26a. In untreated C26a liver metastases, we observed a considerable amount of hypoxia, similar to the amount in liver metastases of patients with colorectal cancer. Compared to untreated mice, we observed a significantly smaller hypoxic fraction in the liver metastases of mice treated with nicotinamide and carbogen breathing as single treatments or in combination. In the group of mice that underwent carbogen breathing, perfusion was significantly lower than in the untreated group, but the decrease was only marginal. The proliferative activity was similar in all groups. In C26a subcutaneous tumors, a similar effect on hypoxia has been observed that was, however, combined with a decrease in proliferative activity. The different effects of nicotinamide and carbogen on parameters of the tumor microenvironment in liver metastases and subcutaneous tumors suggest that the host tissue influences the mechanism by which nicotinamide and carbogen exert their effects. Since tumor hypoxia may be a clinical problem in colorectal liver metastases, our results open possibilities for further research on the effect of hypoxia modifiers on colorectal liver metastases to improve therapy outcome.  相似文献   
52.
Induced disease resistance and gene expression in cereals   总被引:8,自引:0,他引:8  
Disease resistance strategies reduce chemical input into the environment and are therefore powerful approaches to sustainable agriculture. Induced resistance (IR) has emerged as a potential alternative, or a complementary strategy, for crop protection. IR signifies the control of pathogens and pests by prior activation of plant defence pathways. A molecular understanding of IR in cereals, including the most important global crops wheat and rice, has been largely missing. Evidence indicating that central elements of IR pathways are conserved among Di- and Monocotyledoneae has only recently been presented, although their regulation and interaction with other plant pathways may be quite divergent. We present here a synopsis of current molecular knowledge of cereal IR mechanisms.  相似文献   
53.
Tissue oxygenation influences the radiation response of tumors. To further investigate the underlying mechanisms of tumor hypoxia, the spatial distribution of hypoxic cells in relation to the vasculature was studied. In a panel of three human glioma xenograft lines (E2, E102, E106) with different growth characteristics, tumor line-specific patterns of hypoxia (pimonidazole) and (functional) vasculature (Hoechst 33342) were observed. Two of the three glioma lines showed a more homogeneous distribution of perfused vessels (E102 and E106) than the third glioma line (E2). Although all tumors showed hypoxia, the distance at which the steepest part of the gradient of the hypoxia marker was found varied significantly among the different glioma lines. The faster-growing E102 tumors had the longest distance (>300 microm). These results indicate that tumor line-specific factors, rather than vascular geometry alone, may determine the oxygenation status of a tumor. As a consequence, vascular density cannot be used as a surrogate parameter for tumor hypoxia when comparing different tumors. Additional hypoxia and perfusion markers will further improve our understanding of changes in tumor physiology at the microregional level explaining the relationship between the low oxygen levels and the response of tumors to treatment.  相似文献   
54.
We analysed pathogenesis-related expression of genes, that are assumed to be involved in ubiquitous plant defence mechanisms like the oxidative burst, the hypersensitive cell death reaction (HR) and formation of localized cell wall appositions (papillae). We carried out comparative northern blot and RT-PCR studies with near-isogenic barley (Hordeum vulgareL. cv. Pallas) lines (NILs) resistant or susceptible to the powdery mildew fungus race A6 (Blumeria graminis f.sp. hordei, BghA6). The NILs carrying one of the R-genes Mla12, Mlg or the mlo mutant allele mlo5 arrest fungal development by cell wall appositions (mlo5) or a HR (Mla12) or both (Mlg). Expression of an aspartate protease gene, an ascorbate peroxidase gene and a newly identified cysteine protease gene was up-regulated after inoculation with BghA6, whereas the constitutive expression-level of a BAS gene, that encodes an alkyl hydroperoxide reductase, was reduced. Expression of a newly identified barley homologue of a mammalian cell death regulator, Bax inhibitor 1, was enhanced after powdery mildew inoculation. An oxalate oxidase-like protein was stronger expressed in NILS expressing penetration resistance. A so far unknown gene that putatively encodes the large subunit of a superoxide generating NADPH oxidases was constitutively expressed in barley leaves and its expression pattern did not change after inoculation. A newly identified barley Rac1 homologue was expressed constitutively, such as the functionally linked NADPH oxidase gene. Gene expression patterns are discussed with regard to defence mechanisms and signal transduction.  相似文献   
55.
Hückelhoven R  Kogel KH 《Planta》2003,216(6):891-902
Reactive oxygen intermediates (ROIs) such as hydrogen peroxide (H(2)O(2)) and the superoxide anion radical (O*(2)(-)) accumulate in many plants during attack by microbial pathogens. Despite a huge number of studies, the complete picture of the role of ROIs in the host-pathogen interaction is not yet fully understood. This situation is reflected by the controversially discussed question as to whether ROIs are key factors in the establishment and maintenance of either host cell inaccessibility or accessibility for fungal pathogens. On the one hand, ROIs have been implicated in signal transduction as well as in the execution of defence reactions such as cell wall strengthening and a rapid host cell death (hypersensitive reaction). On the other hand, ROIs accumulate in compatible interactions, and there are reports suggesting a function of ROIs in restricting the spread of leaf lesions and thus in suppressing cell death. Moreover, in situ analyses have demonstrated that different ROIs may trigger opposite effects in plants depending on their spatiotemporal distribution and subcellular concentrations. This demonstrates the need to determine the particular role of individual ROIs in distinct stages of pathogen development. The well-studied interaction of cereals with fungi from the genus Blumeria is an excellent model system in which signal transduction and defence reactions can be further elucidated in planta. This review article gives a synopsis of the role of ROI accumulation, with particular emphasis on the pathosystem Hordeum vulgare L.- Blumeria graminis.  相似文献   
56.
57.
Using ion-selective microprobes, interactive signalling between barley and Blumeria graminis or Bipolaris sorokiniana has been investigated. The question was raised whether a biotrophically growing fungus manipulates the electrical driving forces (membrane potential, transmembrane pH), required for H+ cotransport of energy-rich compounds. Electrodes were positioned in the substomatal cavity of open stomata or on the leaf surface, and pH was measured continuously up to several days during fungal development. We demonstrate that surface and apoplastic fluids are electrically coupled and respond in a similar manner to stimuli. Apoplastic pH, monitored from the moment of inoculation with conidia, reveals several phases: 2-4h after inoculation of the barley leaf with either fungus, the host displays rapid transient responses after its first contact with the fungal cell wall; apoplastic pH and pCa increases, cytoplasmic pH and pCa decreases. About 1 day after inoculation, the apoplastic pH increases by up to 2 pH units, which is thought to reflect a resistance response against the intruder. Whereas barley leaf cells possess a membrane potential of -152+/-5 mV, hyphae of B. graminis yield -251+/-8 mV, indicative of a substantial driving force advantage for the fungus. Although the resting membrane potential of barley remains constant during the first days after inoculation, leaves infected with B. sorokiniana get confronted with an energy problem, indicated by a retarded repolarization following a "light-off" stimulus. Five days after inoculation, apoplastic pH has increased to 5.97+/-0.47 (n=11) and does no longer respond to "light-off" when measured within lesions. In contrast, it stays at near normal values outside the lesions and responds to "light-off". It is concluded that biotrophically growing fungi do not manipulate the cotransport driving forces since (i) any change in apoplastic pH would be experienced by both partners; (ii) the resting membrane potential is not changed. It is suggested that measured pH changes reflect defence responses of the host against the fungus rather than fungal action to increase compatibility.  相似文献   
58.
59.
Activation of effector caspases is considered to be the final step in many apoptosis pathways. We transfected HeLa cells with a recombinant caspase substrate composed of cyan and yellow fluorescent protein and a linker peptide containing the caspase cleavage sequence DEVD, and we examined the cleavage kinetics at the single-cell level by fluorescence resonance energy transfer (FRET) analysis. Caspase activation in response to tumor necrosis factor-alpha, staurosporine, or etoposide resulted in cleavage of the linker peptide and subsequent disruption of the FRET signal. The time to caspase activation varied among individual cells, depending on the type of treatment and concentration used. However, once initiated, disruption of the FRET signal was always rapid (相似文献   
60.
Pseudobactin production by Pseudomonas putida WCS358 significantly improves biological control of fusarium wilt caused by nonpathogenic Fusarium oxysporum Fo47b10 (P. Lemanceau, P. A. H. M. Bakker, W. J. de Kogel, C. Alabouvette, and B. Schippers, Appl. Environ. Microbiol. 58:2978-2982, 1992). The antagonistic effect of Fo47b10 and purified pseudobactin 358 was studied by using an in vitro bioassay. This bioassay allows studies on interactions among nonpathogenic F. oxysporum Fo47b10, pathogenic F. oxysporum f. sp. dianthi WCS816, and purified pseudobactin 358, the fluorescent siderophore produced by P. putida WCS358. Both nonpathogenic and pathogenic F. oxysporum reduced each other's growth when grown together. However, in these coinoculation experiments, pathogenic F. oxysporum WCS816 was relatively more inhibited in its growth than nonpathogenic F. oxysporum Fo47b10. The antagonism of nonpathogenic F. oxysporum against pathogenic F. oxysporum strongly depends on the ratio of nonpathogenic to pathogenic F. oxysporum densities: the higher this ratio, the stronger the antagonism. This fungal antagonism appears to be mainly associated with the competition for glucose. Pseudobactin 358 reduced the growth of both F. oxysporum strains, whereas ferric pseudobactin 358 did not; antagonism by pseudobactin 358 was then related to competition for iron. However, the pathogenic F. oxysporum strain was more sensitive to this antagonism than the nonpathogenic strain. Pseudobactin 358 reduced the efficiency of glucose metabolism by the fungi. These results suggest that pseudobactin 358 increases the intensity of the antagonism of nonpathogenic F. oxysporum Fo47b10 against pathogenic F. oxysporum WCS816 by making WCS816 more sensitive to the glucose competition by Fo47b10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号